Step of Proof: do-apply-compose
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
do-apply-compose
:
A
,
B
,
C
:Type,
g
:(
A
(
B
+ Top)),
f
:(
B
(
C
+ Top)),
x
:
A
.
(
can-apply(
f
o
g
;
x
))
(do-apply(
f
o
g
;
x
) ~ do-apply(
f
;do-apply(
g
;
x
)))
latex
by ((UnivCD)
CollapseTHENA (Auto
)
)
CollapseTHEN ((MoveToConcl (-1))
CollapseTHEN ((
C
RepUR ``do-apply can-apply p-compose`` ( 0)
)
CollapseTHEN (((GenConclAtAddr [1;1;1;1;1])
Co
CollapseTHENA (Auto
)
)
CollapseTHEN ((D (-2)
)
CollapseTHEN ((Reduce 0)
CollapseTHEN (Auto
C
)
)
)
)
)
)
latex
C
.
Definitions
Type
,
f
o
g
,
can-apply(
f
;
x
)
,
do-apply(
f
;
x
)
,
f
(
a
)
,
Top
,
s
=
t
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
left
+
right
,
b
,
P
Q
,
False
origin